>
 
您的位置:九州平台(广州)股份有限公司>> 理学院>> 九州平台(广州)股份有限公司>>正文内容
上海师范大学郭谦教授学术报告
来源:     发布时间:2022年10月04日    点击数:

       上海师范大学郭谦教授受袁海燕副院长邀请将于2022年10月5日14:00在腾讯会议上作题目为《平均场随机微分方程的一类高效算法》的学术报告,会议号:269747140。

报告简介:

In this talk, we present a numerical approach to solve the McKean-Vlasov equations, which are distribution-dependent stochastic differential equations, under some non-globally Lipschitz conditions for both the drift and diffusion coefficients. We establish a propagation of chaos result, based on which the McKean-Vlasov equation is approximated by an interacting particle system. A truncated Euler scheme is then proposed for the interacting particle system allowing for a Khasminskii-type condition on the coefficients. To reduce the computational cost, the random batch approximation proposed in [Jin et al., J. Comput. Phys., 400(1), 2020] is extended to the interacting particle system where the interaction could take place in the diffusion term. An almost half order of convergence is proved in Lp sense.

报告人简介:

郭谦,上海师范大学数理学院教授、博士生导师,上海师范大学数理学院副院长、数学系主任,目前担任中国工业与应用数学学会理事、中国系统仿真学会仿真算法专业委员会委员、上海市工业与应用数学学会理事。

主持国家自然科学基金以及上海市自然科学基金等多个科研项目。获上海市自然科学三等奖。主要从事随机微分方程数值解的研究,在SIAM J. Control Optim.等知名学术刊物发表论文30 余篇。

打印文章】【查看评论  
  上一篇:第四届九州平台(广州)股份有限公司数学竞赛获奖公告
下一篇:没有了!
相关文章
没有相关内容
联系我们 | 版权声明 | 关于我们 | 管理指南 | 管理登录 黑ICP备11005929